Skip to main content

Sanal Ufuk - Arduino Processing MPU6050 3DR Telemetri

Merhaba arkadaşlar,

Bu gün literatürde suni ufuk, yapay ufuk olarak da geçen ve benim ise sanal ufuk olarak adlandırmayı daha uygun bulduğum arayüzü processing ile hazırlayıp, insansız hava aracımızdan gelen sensör verilerini yere indirip bu arayüze aktarmaya çalışacağız.


Kullanacağımız sistemi anlatacak olursam, başlıca malzemeler :
  • Arduino Nano
  • MPU6050
  • 3DR Telemetri
  • Güç Kaynağı - Pil
  • Bağlantı kabloları
İlk olarak Arduino Nano - MPU6050 bağlantısını yaparken dikkat etmemiz gereken pinler SDA, SCL ve INT. Bunlardan ziyade Vcc pinini 3.3 volta, Gnd ise toprağa bağlıyoruz.



  • SDA - A4
  • SCL - A5
  • INT - 2 (Dijital)
Buraya kadar olan kısmı yapıp direkt usb port ile bağlantıyı sağlayabilirsiniz. Tabi ben sistem kablosuz olsun istediğim için telemetri kullandım. Bağlantılarında yapmamız gereken:

  • 5V - 5V
  • Gnd - Gnd
  • Rx Tx
  • Tx - Rx



Kullanacağımız arayüz yabancı bir arkadaşın tasarımı, onun kodu üzerinde haberleşme ile ilgili kısımları düzenleyerek MPU6050'ye uyumlu hale getirdim. Arduino- Processing haberleşmesi için serial event fonksiyonunu kullandık, detaylı bilgi edinmek için :

http://mfurkanbahat.blogspot.com.tr/2014/11/serial-event-arduino-processing-3-potlu.html



Kodumuza gelecek olursak öncelikle yapmanız gereken MPU6050 ve i2cdev kütüphanelerini indirmeniz gerekiyor.

Kütüphaneler : http://playground.arduino.cc/Main/MPU-6050

MPU6050 hakkında detaylı bilgi edinmek için : http://www.invensense.com/mems/gyro/documents/PS-MPU-6000A-00v3.4.pdf


Arduino kodumuz :





// M.Furkan Bahat , Kasım 2014
// Ayrıntılı Bilgi için :  http://mfurkanbahat.blogspot.com.tr/

#include "I2Cdev.h"
#include "MPU6050_6Axis_MotionApps20.h"

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
#endif

MPU6050 mpu;
#define OUTPUT_READABLE_YAWPITCHROLL
#define LED_PIN 13 
bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };

// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
    mpuInterrupt = true;
}

// ================================================================
// ===                      INITIAL SETUP                       ===
// ================================================================

void setup() {
    // join I2C bus (I2Cdev library doesn't do this automatically)
    #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
        Wire.begin();
        TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
        Fastwire::setup(400, true);
    #endif

    // initialize serial communication
    // (115200 chosen because it is required for Teapot Demo output, but it's
    // really up to you depending on your project)
    Serial.begin(57600);
    while (!Serial); // wait for Leonardo enumeration, others continue immediately
    mpu.initialize();
    devStatus = mpu.dmpInitialize();

    // supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(220);
    mpu.setYGyroOffset(76);
    mpu.setZGyroOffset(-85);
    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

    // make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        mpu.setDMPEnabled(true);

        // enable Arduino interrupt detection
        //Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
        attachInterrupt(0, dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();

        // set our DMP Ready flag so the main loop() function knows it's okay to use it
        //Serial.println(F("DMP ready! Waiting for first interrupt..."));
        dmpReady = true;

        // get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        
        Serial.print(devStatus);
        Serial.println(F(")"));
    }

    // configure LED for output
    pinMode(LED_PIN, OUTPUT);
}

// ================================================================
// ===                    MAIN PROGRAM LOOP                     ===
// ================================================================

void loop() {
    // if programming failed, don't try to do anything
    if (!dmpReady) return;

    // wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {
 
    }

    // reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

    // get current FIFO count
    fifoCount = mpu.getFIFOCount();

    // check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();
        //Serial.println(F("FIFO overflow!"));

    // otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

        // read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
        
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;

        #ifdef OUTPUT_READABLE_QUATERNION
            // display quaternion values in easy matrix form: w x y z
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            Serial.print("quat\t");
            Serial.print(q.w);
            Serial.print("\t");
            Serial.print(q.x);
            Serial.print("\t");
            Serial.print(q.y);
            Serial.print("\t");
            Serial.println(q.z);
        #endif

        #ifdef OUTPUT_READABLE_EULER
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetEuler(euler, &q);
            Serial.print("euler\t");
            Serial.print(euler[0] * 180/M_PI);
            Serial.print("\t");
            Serial.print(euler[1] * 180/M_PI);
            Serial.print("\t");
            Serial.println(euler[2] * 180/M_PI);
        #endif

        #ifdef OUTPUT_READABLE_YAWPITCHROLL
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
            //Serial.print("Phi: ");
            Serial.print(ypr[2] * 18/M_PI);
            //Serial.print("\t theta: ");
            Serial.print(" ");
            Serial.print(ypr[1] * 180/M_PI);
            //Serial.print("\t Psi: ");
            Serial.print(" ");
            Serial.println(ypr[0] * 180/M_PI);
            //delay(100);
        #endif

        #ifdef OUTPUT_READABLE_REALACCEL
            // display real acceleration, adjusted to remove gravity
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            Serial.print("areal\t");
            Serial.print(aaReal.x);
            Serial.print("\t");
            Serial.print(aaReal.y);
            Serial.print("\t");
            Serial.println(aaReal.z);
        #endif

        #ifdef OUTPUT_READABLE_WORLDACCEL
            // display initial world-frame acceleration, adjusted to remove gravity
            // and rotated based on known orientation from quaternion
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
            Serial.print("aworld\t");
            Serial.print(aaWorld.x);
            Serial.print("\t");
            Serial.print(aaWorld.y);
            Serial.print("\t");
            Serial.println(aaWorld.z);
        #endif
    
        #ifdef OUTPUT_TEAPOT
            // display quaternion values in InvenSense Teapot demo format:
            teapotPacket[2] = fifoBuffer[0];
            teapotPacket[3] = fifoBuffer[1];
            teapotPacket[4] = fifoBuffer[4];
            teapotPacket[5] = fifoBuffer[5];
            teapotPacket[6] = fifoBuffer[8];
            teapotPacket[7] = fifoBuffer[9];
            teapotPacket[8] = fifoBuffer[12];
            teapotPacket[9] = fifoBuffer[13];
            Serial.write(teapotPacket, 14);
            teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
        #endif

        // blink LED to indicate activity
        blinkState = !blinkState;
        digitalWrite(LED_PIN, blinkState);
    }
}


Processing kodumuz :




//Adrian Fernandez'e teşekkürler.
//Haberleşme bölümü güncellendi. M.Furkan Bahat-Kasım 2014
//Ayrıntılı bilgi için :  http://mfurkanbahat.blogspot.com.tr/

import processing.serial.*;
import cc.arduino.*;


int W=1400; //Ekranımızın uzunluğu 
int H=700;  //Ekranımızın genişliği
float Egim; 
float Yatma; 
float GuneyAcisi; 
float ArtificialHoizonMagnificationFactor=0.7; 
float CompassMagnificationFactor=0.85; 
float SpanAngle=120; 
int NumberOfScaleMajorDivisions; 
int NumberOfScaleMinorDivisions; 
PVector v1, v2; 


Serial port;
float Phi;    //Dimensional axis
float Theta;
float Psi;

void setup() 
{ 
  size(W, H); 
  rectMode(CENTER); 
  smooth(); 
  //strokeCap(SQUARE);//Optional 
  
  println(Serial.list()); //Shows your connected serial ports
  //port = new Serial(this, "COM20", 57600); 
  port = new Serial(this, Serial.list()[0], 57600); 
  //Up there you should select port which arduino connected and same baud rate.
  port.bufferUntil('\n'); 
}
void draw() 
{ 
  background(0); 
  translate(W/4, H/2.1);  
  MakeAnglesDependentOnMPU6050(); 
  Horizon(); 
  rotate(-Yatma); 
  EgimScale(); 
  Axis(); 
  rotate(Yatma); 
  Borders(); 
  Plane(); 
  ShowAngles(); 
  Compass(); 
  ShowGuneyAcisi(); 
}
void serialEvent(Serial port) //Reading the datas by Processing.
{
   String input = port.readStringUntil('\n');
  if(input != null){
   input = trim(input);
  String[] values = split(input, " ");
 if(values.length == 3){
  float phi = float(values[0]);
  float theta = float(values[1]); 
  float psi = float(values[2]); 
  print(phi);
  print(theta);
  println(psi);
  Phi = phi;
  Theta = theta;
  Psi = psi;
  
   }
  }
}
void MakeAnglesDependentOnMPU6050() 
{ 
  Yatma =-Phi/5; 
  Egim=Theta*10; 
  GuneyAcisi=Psi;
}
void Horizon() 
{ 
  scale(ArtificialHoizonMagnificationFactor); 
  noStroke(); 
  fill(0, 180, 255); 
  rect(0, -100, 900, 1000); 
  fill(95, 55, 40); 
  rotate(-Yatma); 
  rect(0, 400+Egim, 900, 800); 
  rotate(Yatma); 
  rotate(-PI-PI/6); 
  SpanAngle=120; 
  NumberOfScaleMajorDivisions=12; 
  NumberOfScaleMinorDivisions=24;  
  CircularScale(); 
  rotate(PI+PI/6); 
  rotate(-PI/6);  
  CircularScale(); 
  rotate(PI/6); 
}
void ShowGuneyAcisi() 
{ 
  fill(50); 
  noStroke(); 
  rect(20, 470, 440, 50); 
  int GuneyAcisi1=round(GuneyAcisi); 
  textAlign(CORNER); 
  textSize(35); 
  fill(255); 
  text("GuneyAcisi:  "+GuneyAcisi1+" Deg", 80, 477, 500, 60); 
  textSize(40);
  fill(25,25,150);
  text("M.Furkan Bahat", -350, 477, 500, 60); 
}
void Compass() 
{ 
  translate(2*W/3, 0); 
  scale(CompassMagnificationFactor); 
  noFill(); 
  stroke(100); 
  strokeWeight(80); 
  ellipse(0, 0, 750, 750); 
  strokeWeight(50); 
  stroke(50); 
  fill(0, 0, 40); 
  ellipse(0, 0, 610, 610); 
  for (int k=255;k>0;k=k-5) 
  { 
    noStroke(); 
    fill(0, 0, 255-k); 
    ellipse(0, 0, 2*k, 2*k); 
  } 
  strokeWeight(20); 
  NumberOfScaleMajorDivisions=18; 
  NumberOfScaleMinorDivisions=36;  
  SpanAngle=180; 
  CircularScale(); 
  rotate(PI); 
  SpanAngle=180; 
  CircularScale(); 
  rotate(-PI); 
  fill(255); 
  textSize(60); 
  textAlign(CENTER); 
  text("B", -375, 0, 100, 80); 
  text("D", 370, 0, 100, 80); 
  text("K", 0, -365, 100, 80); 
  text("G", 0, 375, 100, 80); 
  textSize(30); 
  text("PUSULA", 0, -130, 500, 80); 
  rotate(PI/4); 
  textSize(40); 
  text("KB", -370, 0, 100, 50); 
  text("GD", 365, 0, 100, 50); 
  text("KD", 0, -355, 100, 50); 
  text("GB", 0, 365, 100, 50);
  rotate(-PI/4); 
  CompassPointer(); 
}
void CompassPointer() 
{ 
  rotate(PI+radians(GuneyAcisi));  
  stroke(0); 
  strokeWeight(4); 
  fill(100, 255, 100); 
  triangle(-20, -210, 20, -210, 0, 270); 
  triangle(-15, 210, 15, 210, 0, 270); 
  ellipse(0, 0, 45, 45);   
  fill(0, 0, 50); 
  noStroke(); 
  ellipse(0, 0, 10, 10); 
  triangle(-20, -213, 20, -213, 0, -190); 
  triangle(-15, -215, 15, -215, 0, -200); 
  rotate(-PI-radians(GuneyAcisi)); 
}
void Plane() 
{ 
  fill(0); 
  strokeWeight(1); 
  stroke(0, 255, 0); 
  triangle(-20, 0, 20, 0, 0, 25); 
  rect(110, 0, 140, 20); 
  rect(-110, 0, 140, 20); 
}
void CircularScale() 
{ 
  float GaugeWidth=800;  
  textSize(GaugeWidth/30); 
  float StrokeWidth=1; 
  float an; 
  float DivxPhasorCloser; 
  float DivxPhasorDistal; 
  float DivyPhasorCloser; 
  float DivyPhasorDistal; 
  strokeWeight(2*StrokeWidth); 
  stroke(255);
  float DivCloserPhasorLenght=GaugeWidth/2-GaugeWidth/9-StrokeWidth; 
  float DivDistalPhasorLenght=GaugeWidth/2-GaugeWidth/7.5-StrokeWidth;
  for (int Division=0;Division

İyi çalışmalar dilerim (:


Comments

  1. Your blog has always been a good source for me to get quality tips on blogging. Thanks once again
    ayrıntılı counter

    ReplyDelete
  2. gökte ararken yerde buldum desem yeridir ingilizce aratıyordum türk bir insan bunlarla uğraşmaz diye açıklama kısmına geldim ve bir baktım M.Furkan BAHAT bir türk ismi cidden çok sevindim neyse konuya gelelim. Ben uçak bakım bölümünde okuyorum ve bölüm dersimden proje aldım. Adam akıllı bir şey yapayım dedim ve aklıma bu geldi araştırdım birkaç bilgiye sahip oldum. Şimdi ben ardunio programlarını nasıl kullanacağımı bilmiyorum bana yardım edebilrimisiniz acaba bu konu hakkında kod vermişsiniz onu nereye yazacağımı biliyorum fakat ondan sonraki kodu nereye yazacağım ve o gösterge paneline nasıl geçeceğim hiçbir fikrim yok yardım ederseniz sevinirim :D

    ReplyDelete
  3. processing kodu eksik acilen lazım düzeltebilir misin? en sonda bakarsan

    float DivCloserPhasorLenght=GaugeWidth/2-GaugeWidth/9-StrokeWidth;
    float DivDistalPhasorLenght=GaugeWidth/2-GaugeWidth/7.5-StrokeWidth;
    for (int Division=0;Division

    devamı yok.

    ReplyDelete

Post a Comment

Popular posts from this blog

Artificial Horizon and Compass Using Arduino-Processing-MPU6050

Hi everyone, Today we will realize our artificial horizon using Arduino, Processing and MPU 6050 IMU. In this application I use Arduino Uno, If you should use different card, you should examine i2c communication for your card. For Arduino Uno connections will be like that: MPU6050 Pins       Arduino Uno Pins Vcc                        3.3V Gnd                       Gnd SCL                       A5 SDA                      A4 INT                       2 (Digital Pin) This my MPU6050, if you want more information about it: http://www.invensense.com/mems/gyro/documents/PS-MPU-6000A-00v3.4.pdf After it we connecting the MPU6050 to Arduino. If our Arduino-MPU6050 system is ready, we can begin to try it. In this level, we should read three dimensional degrees which are Phi, Theta, Psi on MPU6050 using serial monitor. For doing this of course we need the code, Here is the arduino code: // M.Furkan Bahat , November 2014 // For more information http:/

Onuncu Yıl Marşı - Arduino

Bir önceki çalışmamızda sizlere Arduino'nun hazır melodilerinden dinletiler sunmuştuk. Bu gün ise sınırları biraz daha zorlayıp Nokia 3310 Besteleyici deneyimime güvendiğim için kodları kurcalayarak bestelediğim Onuncu Yıl Marşı'nı bayrak sallayarak dinletmek istiyorum. Eğer gerçekten Onuncu Yıl Marşı olarak dinlerseniz öyle oluyor, lütfen biraz ön yargı :) (3310'nun besteleyisinden kat be kat zor bir iş olduğunu itiraf etmeliyim) Servo ucuna bağladığım bayrağı sürekli olarak bir sağa bir sola sallama isteğim, Tone.h kütüphanesinin Servo.h kütüphanesini yanında barındırmak istememesi üzerine sekteye uğradı. Timer hatası sebebiyle bunu yapamadım, fakat yılmadım servo'yu direkt melodi sinyalinin geldiği bacağa bağladım. Bu ise her ne kadar dolu dolu bir bayrak sallayış olmasa da gönlümüzü etmeye yetiyor :) Gerekli malzemeler: Servo Hoparlör Bağlantı Kabloları Olmazsa olmazımız bayrağımız. Bağlantının nasıl yapılacağına gelecek olursak Hoparlörün si

Görüntü işleme için Uçuş Denemesi

Merhabalar, Bu çalışmamızda havandan görüntü almak isteyen veyahut bu görüntüleri işlemek isteyen arkadaşlara referans olsun diye iki adet video paylaşacağım. Videoları kişisel bilgisayarınıza indirip görüntü işleme açısından çalışmalar yapabilirsiniz. Diğer taraftan yerde belirlediğimiz bir nesnenin boyutunun irtifa değerlerine göre ekranda kapladığı piksel değişimini inceleyebilirsiniz. Ya da en azından belirli irtifa değerlerinden nesneler ve insanların nasıl göründüğü hakkında genel kültür olur :) İlk videoda 70cm x 70cm beyaz bir levha kullanıldı, diğer taraftan oturan, ayakta ve yürüyen insan figürleri de videoda mevcut. Bunların çeşitli irtifa değerlerine göre dikey şekilde konumlandırılmış, yere doğru bakan kameradan nasıl göründüğü konusunda fikir sahibi olmanıza sebep olacağını düşünmekteyim. İkinci videoda 30-100 metre arasında dolaşan (genelinde 45 metre civarında) bir insansız hava aracından alınan görüntüler mevcut. Aşağı konumlandırılmış hedefler 70 cm x